
Table of Contents
1 MACHINE LANGUAGE COMPILER (MASD)................................

1.1 Generalities on ML (Machine Language)
1.2 Launching Masd...................................Error! Bookmark not defined.
1.3 Generalities on Masd Syntax
1.4 Links ..Error! Bookmark not defined.
1.5 Using labels ..
1.6 Using constants ..
1.7 Expressions ..
1.8 Skips..
1.9 SATURN instructions syntax................................

1.9.1 Assigning 0 to a register ..
1.9.2 Loading a value in A or C..
1.9.3 Loading a register value into another register................................
1.9.4 Exchange between two registers
1.9.5 Addition..
1.9.6 Subtraction..
1.9.7 Increment and decrement..
1.9.8 Right nibbles shifting (divide by 16)................................
1.9.9 Left nibbles shifting (multiply by 16)................................
1.9.10 Right bit shifting (divide by 2)
1.9.11 Right circular nibble shifting................................
1.9.12 Left circular nibble shifting..
1.9.13 Logical AND ..
1.9.14 Logical OR ..
1.9.15 Logical NOT..
1.9.16 Mathematical NOT..
1.9.17 Loading value into a R Register
1.9.18 Loading value into A or C from a R register
1.9.19 Exchange between A or C and a R register................................
1.9.20 Memory write (POKE)..
1.9.21 Memory read (PEEK) ..
1.9.22 D0 and D1 modifications ..

a) Loading D0 and D1 ..
b) Exchanges between A or C and D0 or D1

♦ Loading A or C, field A, into D0 or D1
♦ Loading the four low nibbles of A or C into D0 or D1
♦ Exchanging A or C, field A, and D0 or D1.
♦ Exchanging the 4 first nibbles of A or C and D0 or D1

c) Increment and decrement of D0 and D1

Contents Meta Kernel

Working registers tests ...11
Equality and inequality tests ...11
Lower and greater tests ...11
Nullity tests ..11
Working with some bits of A or C register..11
Operations on PC ...11
Working with the Hardware Status Register ...12

ng with P..12
Jump instructions ...12
Exchanges between C and RSTK..12
Input / output instructions...12
Processor control instructions ...13

.. 14

NTRODUCTION TO ASSEMBLY LANGUAGE... 15
Introduction... 15
What is assembly language (asm) ?.. 15
The Saturn processor ... 15

Generalities ..15
Working and saving registers ..15
P register ..16
Flags register ..16
Return stack ...16
Memory pointers...16
Memory..16
Pointers ..16

emory accesses ..17
Starting and stopping a Program ... 17
Working with the RPL stack ... 17
Saturn instruction set ... 18

.. 27

Meta Kernel Appendixes

1 Machine Language Compiler (Masd)

1.1 Before you start
This section will talk about the MASD syntax as used with the RPLCOMP/SASM tools
from the HPTools v3.0.
There are some differences between the MASD syntax used in the MetaKernel and
the one used with the HPTools.
The main limitations are the expressions that are compiled on 32 bits only (64 bits with
the MK v2.0) and operations can’t be performed on two external labels.

1.2 Generalities on ML (Machine Language)
As the Saturn processor directly executes ML, the operating system can not control
what a ML program is doing.
On the HP 48 calculator, user data are stored in the same area as temporary data.
When there is a bug in a ML program, you have best chance to lost your data’s. So be
very careful when programming in ML.
ML is a processor dependent language, so what you will learn on the HP 48/38/49 will
not be useful on other processor. On the other hand, the programming techniques you
will acquire are not dependent of the hardware and then will be reusable.

1.3 Generalities on Masd Syntax
Masd expects a character string (called source) on the top of the stack.
A source is a set of instructions, comments, and separation characters and ends with
a carriage return and an arobas @.
Masd is case sensitive, so be careful, as « boucle » and «
different labels.
Separation characters are those with an ASCII number below 32. They include
spaces, tabs, line feed and carriage return.
Some instructions need a parameter, called field. Separation characters between an
instruction and the field, are spaces, tabs, and points. Therefore
instead of A+B A.
Comments can be placed everywhere between two instructions. They begin with
or ; and finish at the end of the current line.

1.4 Using labels
A label is a marker in the program. The principal use of labels is to determine jump
destinations.
A label is a set of less than 128 characters different from space, ‘
label begins with a star ‘*’ and ends with a separation character.
*BigLoop is the BigLoop label declaration.
Be careful about upper and lower cases!

Appendixes Meta Kernel

Three types of labels can be used:

A glocal label is a label that can be used everywhere in the project, like global
variables in Pascal or C.

A Local lab is a label that is only accessible in a local section like local variables in

A local section starts at the beginning of a source, after a global label, after a link (see

A local section finishes at the end of a source, before a link, before a global label.
A local label is identified by a ‘.’ as the first character.

A link label is a label that exists only in the link where it is declared, like a private
clause in Object Pascal.
A link label is identified by a ‘_’ as the first character.
Note 1: In projects, using less global labels is better because a global label is longer to
compile and because it gives a better program structure. A good habit is to use global
labels to cut the program in subroutines, and to use local labels inside these

Using constants
It is possible to define constants. It is useful to identify a memory address by a name,
rather by the address itself.
For example, instead of typing D1=80100 every time it is needed, it is better to

DC Result 80100 at the beginning of the project and then to type
D1=(5)Result when needed.

Constant declaration:
CstName Expression or
CstName Expression or

CstName Expression

CstName CstValue or EQU CstName CstValue
 is a hexadecimal number. A decimal number can be typed with a leading #

 is same as DC Foo #16
constant cannot be given the same name as a declared label.

Note 2: The name of a constant follows the same rules as the name of a label.

Masd introduces a ‘programming register’ called CP (Constant Pointer) which helps to
define constants. CP is defined by:

CPE=Expression

CP is defined on 5 nibbles, its initial value is 80100.

Meta Kernel Appendixes

DCCP Increment ConstantName

declares a constant with the current CP value and then increase CP by Increment.
Note: Increment is a hexadecimal value, to use a decimal value, put a leading
For example, if CP equals to $10
DCCP 5 Foo

defines a Foo constant with a value of $10 and then change the value of CP to $15.

Several constants can be defined, starting from CP.
: Inc CstName0 CstName1 ... CstNameN-1 :
defines N constants CstNamex with a value of CP+x*Inc and then changes the CP
value to CP+N*Inc.

Warning: By default, Inc is an hexadecimal number. MetaKernel’s MASD syntax is
decimal.

1.6 Expressions
An expression is a mathematical operation that is calculated while compiling.
Terms of this operation are hexadecimal or decimal values, constants or labels.
An expression stops on a separation character.
DCCP 5 @Data

...
D1=(5)@Data+$10/#2 D0=(5)$5+DUP

are correct expressions.
Notes:

• A hexadecimal value must begin with a $ and a decimal value must begin with a

• There are no priorities (precedences) in operations. $1+$2*$3=$9 instead of $7. Use
parenthesis to set precedences.

• You can’t use more than three level of parenthesis.

• Calculations are done on 32 bits.

1.7 Skips
Skips are a first step from ML to a third generation language, even if they are only
another way to write SATURN instructions.
The basement of Skips is the Block structure.
A block is enclosed in { and }, and can be inside another block.
The following instructions deal with blocks.

SKIPS instructions Equivalents
SKIP { ... } GOTO .S ... *.S
SKIPL { ... } GOTOL .S ... *.S
SKIPC { ... } GOC .S ... *.S
SKC { ... } GOC .S ... *.S
SKIPNC { ... } GONC .S ... *.S
SKNC { ... } GONC .S ... *.S

Appendixes Meta Kernel

Test GOYES .S ... *.S
Test GOYES .S ... *.S
/Test GOYES .S ... *.S
GOSUB .S ... *.S
GOSUBL .S ... *.S
Defines a block (generates no code)
$/02A2C GOIN5 *.S ... *.S (to create a character string)
$/02DCC GOIN5 *.S ... *.S (to create a code object)

... $/PROLOG GOIN5 .S ... *.S (to create a ‘prolog – length’
object)

/Test is the opposite of Test. For example if Test is ?A<C.A, /Test is ?A>=C.A.
The test instructions dealing with the hardware register (?HST=0, ?MP=0,

?XM=0 and ?SB=0) cannot be inversed.

Once blocks are defined, special instructions can be used in them. These instructions
called EXIT and UP allow to jump to the end or to the beginning of a block.

These instructions are equivalent to

 ?A=0.A EXIT

 ?A=0.A UP

*.Beginning
 GOTO.End
 GOC.End
 GONC.End
 ?A=0.A ¨.End
 GOTO.Beginning
 GOC.Beginning
 GONC.Beginning
 ?A=0.A ¨.Beginning
*.End

Note: do not make confusion between EXIT and UP instructions, which are GOTOs,
and EXIT and UP after a test, which are GOYES’s.
EXIT and UP can jump to the beginning or to the end of an upper-level block by
specifying the number of blocks to exit, after the UP or EXIT instructions.

These instructions Are equivalent to

 UP2
 UP3
 EXIT1
 EXIT3

*.Beg3
 *.Beg2
 *.Beg1
 GOTO.Beg2
 GOTO.Beg3
 GOTO.End1
 GOTO.End3
 *.End1
 *.End2
*.End3

Note: EXIT1 is equivalent to EXIT, and UP1 is equivalent to UP.

Using SKIPELSE, SKEC or SKENC instructions, two blocks create an IFNOT-
THEN-ELSE structure.

Are equivalent to Or in high-level language
?A=0.A GOYES.Beg2
*.Beg1

IF NOT A=0 THEN
 BEGIN

Meta Kernel Appendixes

 EXIT
 UP
}
SKELSE
{
 A+1.A
 EXIT
 UP
}

 GOTO.End2 % and not End1
 GOTO.Beg1
*.End1
GOTO.End2
*.Beg2
 A+1.A
 GOTO.End2
 GOTO.Beg2
*.End2

 ...
 ...
 END
ELSE
 BEGIN
 ...
 ...
 ...
 END

1.8 SATURN instructions syntax
In this section:
x is an integer number between 1 and 16.

h is a hexadecimal digit.

a is a 1 to 16 or a 0 to 15 number depending of the current mode (0-15 or 1-16)

f is a field A, B, X, XS, P, WP, M or S.

Reg is a working register A, B, C or D.

SReg is a save register R0, R1, R2, R3 or R4.

Exp is an expression.

Cst is a constant. The value is given in hexadecimal or decimal using a leading
respectively.
DReg is a pointer register D0 or D1.

Data is memory data pointed by D0 or D1. It means DAT0 or

Note: For instructions that use two working registers, only the pairs A-B, B-C, C-D
and A-C are available.
For instructions like Reg1=Reg1… you can write only Reg1
the same as A+C.A.

1.8.1 Assigning 0 to a register
Syntax: Reg=0.f

Example: A=0.M

1.8.2 Loading a value in A or C
LC and LA instructions allow to load a constant value into A or C register.
LC hhh...hh loads x nibbles into C.

LA hhh...hh loads x nibbles into A.

Example: LC 80100
Note: LC #12 allow to load 12 decimal into the 3 first nibbles of C. The number of
nibbles used is the number of characters necessary to write the value (including the
#). So #12 will take three nibbles.

LCASC(x) Characters loads the hexadecimal value of
must be between 1 and 8. LAASC(x) if the counterpart for A.
Example: LCASC(7) HP_MASD

Appendixes Meta Kernel

Exp or LA(x) Exp load the result of an expression into C or A, using x

LC(5)@Buffer+DataOffset

Loading a register value into another register
=Reg2.f

A=B.X

Exchange between two registers
Reg1Reg2EX.f

CDEX.W

=Reg1+Reg2.f or Reg1+Reg2.f

C=C+A.A or C+A.A

 and Reg2 are same, this cause to multiply the register by two.

=Reg1-Reg2.f or Reg1-Reg2.f

C=C-B.A or C-B.A

Note: The following instructions are also available:
B=C-B.f C=A-C.f D=C-D.f

Increment and decrement
Reg+Cst.f or Reg+Cst.f Reg=Reg-Cst.f or Reg-Cst.f

A=A+10.A or A+10.A A=A-10.A or A-10.A
Note 1: The Saturn processor is not able to add a constant greater than 16 to a
register but if cst is greater than 16, Masd will generate as many instructions as

Note 2: Even if adding constants to a register is very useful, big constants should be
avoided because this will slow down execution, and generate a big program.
Note 3: Adding a constant greater than 1 to a P, WP, XS or S field is a bugged
SATURN instruction (problem with carry propagation). Use these instructions with

Note 4: After adding a constant greater than 16 to a register, the carry should not be

Right nibbles shifting (divide by 16)
SR.f

ASR.W

Left nibbles shifting (multiply by 16)
SL.f

ASL.W

Meta Kernel Appendixes

1.8.10 Right bit shifting (divide by 2)
Syntax: RegSRB.f

Example: ASRB.W

1.8.11 Right circular nibble shifting
Syntax: RegSRC.f

Example: ASRC.W

1.8.12 Left circular nibble shifting
Syntax: RegSLC.f

Example: ASLC.W

1.8.13 Logical AND
Syntax: Reg1=Reg1&Reg2.f or Reg1&Reg2.f

Example: C=C&B.A or C&B.A

1.8.14 Logical OR
Syntax: Reg1=Reg1 !Reg2.f or Reg1 !Reg2.f

Example: C=C!B.A or C!B.A

1.8.15 Logical NOT
Syntax: Reg1=-Reg1-1.f

Example: C=-C-1.A

1.8.16 Mathematical NOT
Syntax: Reg1=-Reg1.f

Example: C=-C.A

1.8.17 Loading value into a R Register
Syntax: RReg=Reg.f

Example: R0=A.W
Note: Reg can only be A or C.

1.8.18 Loading value into A or C from a R register
Syntax: Reg=RReg.f

Example: A=R1.X
Note: Reg can only be A or C.

1.8.19 Exchange between A or C and a R register
Syntax: RegRRegEX.f

Example: AR1EX.X
Note: Reg can only be A or C.

Appendixes Meta Kernel

Memory write (POKE)
Theses instructions write the value of A or C at the address pointed to by D0 or D1.

=Reg.f or Data=Reg.x

DAT1=C.A or DAT0=A.10

 can only be A or C.

Memory read (PEEK)
Theses instructions load into A or C the data pointed to by D0 or D1.

Data.f or Reg=Data.x

C=DAT1.A or A=DAT0.10

 can only be A or C.

D0 and D1 modifications

Loading D0 and D1
=hh or DReg=hhhh or DReg=hhhhh or

DReg=(2)Exp or DReg=(4)Exp or DReg=(5)Exp

D0=FF D0=12345 D1=(5)toto+$5

Exchanges between A or C and D0 or D1

Loading A or C, field A, into D0 or D1
=Reg

D0=A

 can only be A or C.

Loading the four low nibbles of A or C into D0 or D1
=RegS

D0=AS

 can only be A or C.

Exchanging A or C, field A, and D0 or D1.
 RegDRegEX

AD1EX

 can only be A or C.

Exchanging the 4 first nibbles of A or C and D0 or D1
 RegDRegXS

AD1XS

 can only be A or C.

Increment and decrement of D0 and D1
=DReg+Cst or DReg+Cst

=DReg-Cst or DReg-Cst

D0=D0+12 D1-50

Meta Kernel Appendixes

Note 1: The Saturn processor is not able to add a constant greater than 16 to a
register but if cst is greater than 16, Masd will generate as many instructions as
needed.
Note 2: Even if adding constants to a register is very useful, big constants should be
avoided because this will slow down execution, and generate a big program.
Note 3: After adding a constant greater than 16, the carry should not be tested.

1.8.23 Working registers tests
Notes:

• A test is always followed by RTNYES, GOYES, SKIPYES
GOTOL, GOVLNG, GOSUB, GOSUBL or GOSBVL.

• RTY is the same as RTNYES.

• An arrow (¨) may be followed by a label name, then replacing
followed by a skip block, which is equivalent to the inverse of the test followed by
SKIPYES, to reproduce a IF-THEN structure. Example: ?A=C.A ¨{ }
as ?A#C.A { }.

• SKIPYES may be omitted if followed by a skip block ({}).

• If the test if followed by a GOTO, GOTOL, GOVLNG, GOSUB
Masd compiles the inverse of the test, to reproduce a GOYES with a larger range.
Example: ?A=C.A GOTO B is the same as ?A#C.A { GOTO B }

• GOTO, GOTOL, GOVLNG, GOSUB, GOSUBL, GOSBVL or
a HST test.

• A label name must follow a GOYES, GOTO, GOTOL, GOVLNG
GOSBVL.

a) Equality and inequality tests
Syntax: ?Reg1=Reg2.f ?Reg1#Reg2.f

Example: ?A=C.B ?C#D.A

Note: The HP inequality character may be used.

b) Lower and greater tests
Syntax: ?Reg1<Reg2.f ?Reg1<=Reg2.f

Example: ?A<C.B ?C>=D.A

Note: The HP lower or equal and greater or equal characters may be used.

c) Nullity tests
Syntax: ?Reg=0.f ?Reg#0.f

Example: ?A=0.B ?C#0.XS

Note: The HP inequality character may be used.

1.8.24 Working with some bits of A or C register
RegBIT=v.a ?RegBIT=v.a where Reg is A or C, v is 0 or 1 (reset or set), and a
is the bit number.
Examples: ABIT=0.5, ?CBIT=1.3 GOYES TOTO

1.8.25 Operations on PC
A=PC C=PC PC=A PC=C APCEX CPCEX PC=(A) PC=(C)

Appendixes Meta Kernel

Working with the Hardware Status Register
SB=0 XM=0 SR=0 MP=0 HST=a

 ?XM=0 ?SR=0 ?MP=0 ?HST=a

Working with P

P=P+1 P+1 P=P-1 P-1

 C=P.a CPEX.a

C=C+P+1 C+P+1

Jump instructions
label

label or GOLONG label
Cst Cst is an hexadecimal number.

label label is a constant, or a label in absolute mode

COMMAND" Command is an entry in the STARTEXT table.
label

label

Cst Cst is a hexadecimal number.

label label is a constant, or a label in absolute mode.

COMMAND" COMMAND is an entry in the STARTEXT table.

label

label same as SKIPNC { GOTO label }
labelsame as SKIPC { GOTO label }

RTN RTNSXM RTNCC RTNSC RTI

RTNC RTNNC

RTY after a test.

Exchanges between C and RSTK
 and RSTK=C instructions allow to push to or pop data from the Saturn

Input / output instructions
OUT=C, A=IN and C=IN

 and C=IN instructions are bugged (they only work on even addresses).
A=IN2 and C=IN2, which are ROM calls to A=IN and C=IN instructions.

Note 2: if the beginning of ROM is not usable (because it is recovered by RAM), use
C=IN3, which are calls to A=IN and C=IN instructions in the Meta

OUT=C=IN is a ROM call that does OUT=C C=IN.

Meta Kernel Appendixes

Note 4: OUT=C=IN3 is the same, but in the Meta Kernel
ROM is recovered).

1.8.31 Processor control instructions
Working mode modification
SETDEC SETHEX

other instructions
UNCNGF CONFIG RESET C=ID

SHUTDN INTON INTOFF RSI

SREQ?

BUSCB BUSCC BUSCD

Appendixes Meta Kernel

 Appendixes

Meta Kernel Appendixes

1 Introduction to assembly language

1.1 Introduction
Our purpose here is to help you translate an algorithm in Saturn assembly language,
using Masd. You are supposed to already know the programming process, and RPL
language.
If you want to learn how to program, there are several books to do it, like Wirst's 'The
Art of Programming'.
We will try to give you the basis to build little programs. If you want to gain more
experience, look at other people's programs, and read more advanced books on this
subject.
Many informations here are taken from the excellent French book 'Voyage au Centre
de la HP48' by Paul Courbis (Angkor).

1.2 What is assembly language (asm) ?
Asm is the only language directly readable by the microprocessor. Therefore, it is the
fastest and the most powerful language. Each processor has its own asm. Asm is
composed of binary numbers interpreted by the processor, each group of numbers
giving instructions to be processed.
To make it easily readable by humans, each group of numbers is represented by a
mnemonic. Assemblers (like Masd) translate these mnemonics to binary code, that
the processor can execute. They sometimes add macro instructions or even
structures to ease the programmer's work.

1.3 The Saturn processor

1.3.1 Generalities
SATURN is the name of a processor made by NEC. It is used in the HP48. It is a 4-
bit processor (it can process 4 bits at each clock tick), with 4 64-bit working registers,
5 64-bit saving registers, 2 20-bit memory pointers, an internal 8-level return stack, 16
software flags, 4 hardware flags, 1 field register, 1 output register, 1 input register and
1 20-bit program counter.
A bit is a binary digit, it can takes only two values 0 or 1.
A nibble is a 4-bit value, from 0 to 15.

1.3.2 Working and saving registers
These registers are 64-bit (16-nibble) registers divided into fields.
A field is a part of a register; a group of nibbles. Two fields may overlap. They can
have different lengths.
In a Saturn register, there are six fixed fields and two variable fields (depending on P
register):

15 14 13 12 11 10 9 8 7 6 5 4
(With P=9) P

Appendixes Meta Kernel

WP
W

M X
A

B

Example: Working with the A field only affects the 20 lowest bits of the register.
In this text, Cb means register C, field B.

P is a 4-bit register which indicates the WP field length, the P field location, and the
first modified nibble for the instructions LA and LC.

Flags register
The flags register is a 16-bit register, composed of 16 flags, which can be only 0 or 1.
Their use is similar to RPL flags (CF, SF...).

Return stack
The return stack is a set of eight 20-bit registers. Only one of them is accessible
directly (like the RPL stack).
When a subroutine is called (with GOSUB), the return address (just after the GOSUB)
is pushed onto this stack. And when a RTN is encountered, the Saturn pops this
address back from the stack and jumps to it.
Because there are only eight levels, building large programs with a lot of subroutine
levels must not overload the return stack.
It is also possible to push a value with RSTK=C and to pop a value with C=RSTK.

Memory pointers
The three memory pointers D0, D1 and PC are 20-bit registers, which contains

D0 and D1 are used to access memory. You can load any address in them and then

PC is the Program Counter, it holds the address of the next instruction to be
processed. It is modified at every jump (GOTO, GOSUB...), or directly with instructions

PC=C.

Before examining pointers, let's see how memory is seen through HP asm.
HP memory can be compared to a ring of cells. Each cell contains one nibble. They
are numbered from 0 to 524287 (20 bits). It is a ring, so the cell 524287 is followed by
the cell 0. The number of a cell is called its address.

A pointer is a register that contains an address. On HP48, a pointer is 20 bits (5
nibbles) long. Therefore we can access any memory cell with one pointer (Whereas
on PC, we need two pointers).

Meta Kernel Appendixes

c) Memory accesses
On the HP48, memory inputs and outputs are made through the A and C registers,
D0 and D1 indicating which cell will be accessed.
It is possible to access more than one cell at one time, as up to an entire register (16
nibbles) can be loaded.
A=DAT0 A reads 5 nibbles at the address pointed by D0, then the data are put in the
A field of A (Aa).
DAT1=C 12 writes 12 nibbles at the address pointed by D1. The data written are the
12 lowest nibbles of C (nibbles 0 to 11).

� Note that the Saturn processor inverses the order of the data read or written. E.g. if
Ca contains 84571 and D1 contains 80200, DAT1=C A will fill memory as follow:

80200 80201 80202 80203
1 7 5 4

The inversion is done at each read or write, so if you write and then read at the same
address, using the same field, you will retrieve the same data.

1.4 Starting and stopping a Program
Starting to write an asm program looks difficult to beginners, because it requires
comprehension of the RPL system, in order to avoid destroying other data.
To start a program, all the system data must be saved somewhere in memory, where
they will be read back, after your program has finished, in order to continue normal
operation. These data are contained in the registers Ba, Da, D0 and D1.
This saving is done with the Masd instruction SAVE (or the standard Saturn
=SAVPTR). Do it only one time, before doing any other processes.
At the end of your program, you have to restore the system data, with the instruction
LOAD (or GOSBVL =GETPTR).
You can then exit to the RPL system with RPL (or
PC=(A)).
These two instructions can be compacted into the single instruction
GOVLNG =GETPTRLOOP).
The shortest program is:
"SAVE
% This program does nothing !
LOADRPL
@"

1.5 Working with the RPL stack
The RPL stack (the stack displayed on the screen) is stored in memory as a stack of
addresses, each address points to an object in RAM or ROM. In order to reach an
object, its address must be first read.
The stack pointer is in D1, pointing to the address of the first stack level. D1+5 points
to the second level, and so on. A 00000 marks the end of the stack. The command
SAVE saves D1 (and other RPL registers) in reserved RAM, so if you modify D1, and
then need to read the RPL stack, do a LOAD before, which restores D1. And don’t

Appendixes Meta Kernel

forget to do a LOAD before exiting from your program, otherwise D1 could point
somewhere in memory, that may crash your HP.

 Note: If a program needs to read the stack, it is recommended to do the argument
tests in RPL before starting the asm code.
Example: To read the value of a system binary on the first stack level, do the following:
C=DAT1 A % Reads the address of the first level in Ca

 D1 now points on the prolog of this object
 Note that D1 is saved in Ca

 D1 points on the value of the SB
A=DAT1 A % Reads the value in Aa

 Restores D1

To do a DROP, you just have to make the stack start 5 nibbles upper:
 The stack starts upper, so lower levels are dropped
 Da contains the number of free 5 nibbles-blocks,

 so you shall increment it
Da is also saved by SAVE and restored by LOAD.

LOAD after, the old value of D1 is retrieved. In order to effectively drop an
LOAD D1+5 D+1.A at the end of your program (before the RPL

command), or do LOAD D1+5 D+1.A SAVE anywhere in your program.

To put an element on the stack, you just have to create a new stack level. E.g. if the
object address is in Aa:

 loads the RPL registers
D=D-1.A SKIPNC % Tests free memory
{ C=0.A LC 1 ERREUR_C } % Insufficient mem

 Adds a stack level
DAT1=A A % Puts the object address

 Saves the RPL registers

Saturn instruction set
There are four columns in this table.
The first column may be empty, or contains a M or a star. M indicates that the
calculation mode is used (SETDEC and SETHEX). A star indicates that the carry is
modified by the instruction.
The second column contains the instruction mnemonic.
The third column indicates the fields which can be used with the instruction. f is any
field, a or b is any field but A, d is a nibble value (0-15 or 1-16), x is a nibble value (0-

The last column is the execution length in Saturn cycles. n is the number of nibbles in
the used field. If the time is not integer, take IP(time) if the instruction is on an even
address or IP(time)+1 if the instruction is on an odd address. For tests instructions,
there are two times separated by a slash, the first is for a true test, the second for a
false test. For memory instructions, the two times indicate the instruction length and
the memory operation length.
This list is taken from the book 'Voyage au centre de la HP48 GX' by Paul Courbis,
Angkor Editions.

Meta Kernel Appendixes

* ?A#0 A 21.5/13.5
* ?A#0 a 16.5/8.5+q
* ?A#C A 21.5/13.5
* ?A#C a 16.5/8.5+q
* ?A<=B A 21.5/13.5
* ?A<=B b 16.5/8.5+q
* ?A<B A 21.5/13.5
* ?A<B b 16.5/8.5+q
* ?A=0 A 21.5/13.5
* ?A=0 a 16.5/8.5+q
* ?A=C A 21.5/13.5
* ?A=C a 16.5/8.5+q
* ?A>=B A 21.5/13.5
* ?A>=B b 16.5/8.5+q
* ?A>B A 21.5/13.5
* ?A>B b 16.5/8.5+q
* ?ABIT=0 d 20.5/12.5
* ?ABIT=1 d 20.5/12.5
* ?B#0 A 21.5/13.5
* ?B#0 a 16.5/8.5+q
* ?B#A A 21.5/13.5
* ?B#A a 16.5/8.5+q
* ?B<=C A 21.5/13.5
* ?B<=C b 16.5/8.5+q
* ?B<C A 21.5/13.5
* ?B<C b 16.5/8.5+q
* ?B=0 A 21.5/13.5
* ?B=0 a 16.5/8.5+q
* ?B=A A 21.5/13.5
* ?B=A a 16.5/8.5+q
* ?B>=C A 21.5/13.5
* ?B>=C b 16.5/8.5+q
* ?B>C A 21.5/13.5
* ?B>C b 16.5/8.5+q
* ?C#0 A 21.5/13.5
* ?C#0 a 16.5/8.5+q
* ?C#B A 21.5/13.5
* ?C#B a 16.5/8.5+q
* ?C#D A 21.5/13.5
* ?C#D a 16.5/8.5+q
* ?C<=A A 21.5/13.5
* ?C<=A b 16.5/8.5+q
* ?C<A A 21.5/13.5
* ?C<A b 16.5/8.5+q
* ?C=0 A 21.5/13.5
* ?C=0 a 16.5/8.5+q
* ?C=B A 21.5/13.5
* ?C=B a 16.5/8.5+q
* ?C=D A 21.5/13.5
* ?C=D a 16.5/8.5+q
* ?C>=A A 21.5/13.5
* ?C>=A b 16.5/8.5+q
* ?C>A A 21.5/13.5
* ?C>A b 16.5/8.5+q
* ?CBIT=0 d 20.5/12.5
* ?CBIT=1 d 20.5/12.5
* ?D#0 A 21.5/13.5
* ?D#0 a 16.5/8.5+q
* ?D<=C A 21.5/13.5
* ?D<=C b 16.5/8.5+q
* ?D<C A 21.5/13.5
* ?D<C b 16.5/8.5+q
* ?D=0 A 21.5/13.5
* ?D=0 a 16.5/8.5+q

Appendixes Meta Kernel

21.5/13.5
16.5/8.5+q
21.5/13.5
16.5/8.5+q
15.5/7.5
15.5/7.5
15.5/7.5
15.5/7.5
15.5/7.5
15.5/7.5
16.5/8.5
16.5/8.5
15.5/7.5
4.5+q
8
4.5+q
8
4.5+q
8
6+q
6+q
6+q
6+q
4.5+q
8
4.5+q
8
4.5+q
8
4.5+q
8
8+q
4.5+q
8
4.5+q
8
4.5+q
8
8+q
4.5+q
8
4.5+q
8
4.5+q
8
2.5,3.5
20+p,1+q/2
19.5
19+q,1+q/2
23.5,3.5
20+q,1+q/2
19.5
19+q,1+q/2
8.5
11
9+q
20.5
9+q
20.5
9+q
20.5
9+q
20.5
9+q
20.5

Meta Kernel Index

ABEX a 4.5+q
ABEX A 8
ABIT=0 d 7.5
ABIT=1 d 7.5
ACEX a 4.5+q
ACEX A 8
AD0EX 9.5
AD0XS 8.5
AD1EX 9.5
AD1XS 8.5
APCEX 19
AR0EX f 9+q
AR0EX W 20.5
AR1EX f 9+q
AR1EX W 20.5
AR2EX f 9+q
AR2EX W 20.5
AR3EX f 9+q
AR3EX W 20.5
AR4EX f 9+q
AR4EX W 20.5

* ASL a 4.5+q
* ASL A 8

ASLC 22.5
ASR a 4.5+q
ASR A 8
ASRB f 8.5+q
ASRB W 21.5
ASRC 22.5

*M B=-B a 4.5+q
*M B=-B A 8
*M B=-B-1 a 4.5+q
*M B=-B-1 A 8

B=0 a 4.5+q
B=0 A 8
B=A a 4.5+q
B=A A 8
B=B!A f 6+q
B=B!C f 6+q
B=B&A f 6+q
B=B&C f 6+q

*M B=B+1 a 4.5+q
*M B=B+1 A 8
*M B=B+A a 4.5+q
*M B=B+A A 8
*M B=B+B a 4.5+q
*M B=B+B A 8
*M B=B+C a 4.5+q
*M B=B+C A 8
* B=B+x+1 f 8+q
*M B=B-1 a 4.5+q
*M B=B-1 A 8
*M B=B-A a 4.5+q
*M B=B-A A 8
*M B=B-C a 4.5+q
*M B=B-C A 8
* B=B-x-1 f 8+q

B=C a 4.5+q
B=C A 8

*M B=C-B a 4.5+q
*M B=C-B A 8

BCEX a 4.5+q
BCEX A 8

* BSL a 4.5+q
* BSL A 8

Appendixes Meta Kernel

22.5
4.5+q
8
8.5+q
21.5
22.5
10
8.5
10
9.5
4.5+q
8
4.5+q
8
4.5+q
8
4.5+q
8
4.5+q
8
4.5+q
8
6+q
6+q
6+q
6+q
6+q
6+q
4.5+q
8
4.5+q
8
4.5+q
8
4.5+q
8
4.5+q
8
8+q
4.5+q
8
4.5+q
8
4.5+q
8
4.5+q
8
8+q
4.5+q
8
23.5,3.5
20+q,1+q/2
19.5
19+q,1+q/2
23.5,3.5
20+q,1+q/2
19.5
19+q,1+q/2
13.5
8.5
8
11
9+q
20.5
9+q

Meta Kernel Index

C=R1 W 20.5
C=R2 f 9+q
C=R2 W 20.5
C=R3 f 9+q
C=R3 W 20.5
C=R4 f 9+q
C=R4 W 20.5
C=RSTK 9
C=ST 7
CBIT=0 d 7.5
CBIT=1 d 7.5
CD0EX 9.5
CD0XS 8.5
CD1EX 9.5
CD1XS 8.5
CDEX a 4.5+q
CDEX A 8
CETDEC 4
CETHEX 4
CLRHST 4.5
CLRST 7
CONFIG 13.5
CPCEX 19
CPEX x 8
CR0EX f 9+q
CR0EX W 20.5
CR1EX f 9+q
CR1EX W 20.5
CR2EX f 9+q
CR2EX W 20.5
CR3EX f 9+q
CR3EX W 20.5
CR4EX f 9+q
CR4EX W 20.5

* CSL a 4.5+q
* CSL A 8

CSLC 22.5
CSR a 4.5+q
CSR A 8
CSRB f 8.5+q
CSRB W 21.5
CSRC 22.5
CSTEX 7
D=0 a 4.5+q
D=0 A 8
D=C a 4.5+q
D=C A 8

*M D=C-A a 4.5+q
*M D=C-A A 8
*M D=-D a 4.5+q
*M D=-D A 8
*M D=-D-1 a 4.5+q
*M D=-D-1 A 8

D=D!C f 6+q
D=D&C f 6+q

*M D=D+1 a 4.5+q
*M D=D+1 A 8
*M D=D+C a 4.5+q
*M D=D+C A 8
*M D=D+D a 4.5+q
*M D=D+D A 8
* D=D+x+1 f 8+q
*M D=D-1 a 4.5+q
*M D=D-1 A 8
*M D=D-C a 4.5+q

Appendixes Meta Kernel

8
8+q
6
9
10.5
9.5
8.5
9.5
8.5
8.5
8.5
6
9
10.5
9.5
8.5
9.5
8.5
8.8
8.5
19.5
19+q
16.5
18+q
19.5
19.5
16.5
18+q
19.5
19+q
16.5
18+q
19.5
19.5
16.5
18+q
4.5+q
8
22.5
4.5+q
8
8.5+q
21.5
22.5
12.5/4.5
17
12.5/4.5
19.5
15
18
14
18.5
4.5
7
7
(15+3q)/2
3+3q/2
4.5
7.5
5.5
3
8
4
4
26,3.5

Meta Kernel Index

PC=(C) 26,3.5
PC=A 19
PC=C 19
R0=A f 9+q
R0=A W 20.5
R0=C f 9+q
R0=C W 20.5
R1=A f 9+q
R1=A W 20.5
R1=C f 9+q
R1=C W 20.5
R2=A f 9+q
R2=A W 20.5
R2=C f 9+q
R2=C W 20.5
R3=A f 9+q
R3=A W 20.5
R3=C f 9+q
R3=C W 20.5
R4=A f 9+q
R4=A W 20.5
R4=C f 9+q
R4=C W 20.5
RESET 7.5
RSI 8.5
RSTK=C 9
RTI 11
RTN 11
RTNC 12.5/4.5

* RTNCC 11
RTNNC 12.5/4.5

* RTNSC 11
RTNSXM 11
SB=0 4.5
SHUTDN 6.5
SR=0 4.5
SREQ? 9.5
ST=0 d 5.5
ST=1 d 5.5
ST=C 7
UNCNFG 14.5
XM=0 4.5

Meta Kernel Appendixes

 Index
— A—

Assembler, 3, 16
Assembler syntax, 3

— C—
CODE, 7
Constants, 5

— E—
EXITs, 7
Expressions, 6

— L—
Labels, 4
Links, 4

Masd, 3
Masd syntax, 3

Registers, 16

Saturn, 16
Saturn instruction set, 8, 19
SKIPs, 6
STRING, 7
STROBJ, 7

UPs, 7

