Table of Cont

1 MACHINE LANGUAGE COMPILER (MASD).......ceerveennee.
11 Generalities on ML (Machine Language)
1.2 Launching Masd.........ccccccveveieieenienne Error! B
13 Generalities on Masd Syntax...........ccevceeerieennne.
14 LiNKS oo Error! B
15 Using 18DEIScooiiiiieieee e
1.6 USING CONSLANES......ceiiiieiiie et
1.7 EXPIreSSIONS.....coiiiiiiiiieiee e
18 S (] 0= T TP
19 SATURN inStructions syntax............ccceecveevveeenne

191 Assigning 0 to aregistercovveveveeereeeneesieneene
19.2 Loadingavaluein A or C......ccceevveveneenneieniens
193 Loading aregister value into another register.......
194 Exchange between two registers.......ccooevveceneenne
195 AAItiON....eeiieee e
1.9.6 SUBLFACHI 0N
19.7 Increment and decrement...........c.ccovveiencnenenne.
198 Right nibbles shifting (divide by 16)....................
1.9.9 Left nibbles shifting (multiply by 16)...................
1.9.10 Right bit shifting (divideby 2)c..cccooennneneee.
1911 Right circular nibble shifting..........ccccccevcviieneene.
19.12 Left circular nibble shifting.........c.ccovveveieenenene.
1.9.13 LOGICA AND ..o,
1.9.14 LOGICA OR ..ooooeeeeeeeeeeeeeeeee e,
1915 LOGICA NOT ..o,
19.16 Mathematical NOTcccovvevieriiere e
19.17 Loading valueintoaR Registercccccocvvieenennne.
19.18 Loading valueinto A or C from aR register
1.9.19 Exchange between A or C and aRregister..........
1.9.20 Memory write (POKE)........cccoovevvieenrenseeneeenes
19.21 Memory read (PEEK)cccoviveiriienree e
1.9.22 DO and D1 modifications...........ccccuerererenenecns
a) Loading DO and D1.......ccccoveeeieenreinneenee e
b) Exchanges between A or Cand DOor D1............

" Loading A or C, fidd A, intoDOor D1..............
Loading the four low nibbles of A or Cinto DO c
Exchanging A or C, fiedd A, and DO or D1.
Exchanging the 4 first nibbles of A or C and DO

<)

Increment and decrement of DOand D1...............

1g FEQISIENSTESES ... ieiieeieie ettt neenreens 11

Yy and ineqUalItY TESES ..cuveeeieere e 11
AN GrEaLEr TESES...oouieiiiesei e 11
BESES s 11
g with somebitsof A or Cregister......coovvveereeirieceere e 11
TONS 0N PC ...t 11
1g with the Hardware Status REgIStErcccvevvevviieiierecienieene 12
AGWILN P 12
NSETUCHIONS .ttt sb e sresresnesresnennen 12
1ges between C and RSTKo 12
OULPUL INSEFUCHONS......ceeieee e 12
30r CONEFOl TNSEFUCLIONS ...t 13
... 14
I TOASSEMBLY LANGUAGE.......cictiiireiirieesiee e 15
Dttt s 15
sembly l[anguage (ASM) 2.....eeevveriieeeee e 15
T PFOCESSON ..eieitieeeitteeeeaubeeaesssteeessbeeeessnbeeaesanreeesanreeeeanes 15
TS 1ttt 15
10 aNd SAVING FEJISIENS ..cuvieie et nee e nreens 15
= OO UR PP PR PSPPI 16
201 = OSSPSR 16
SEBCK vttt 16
DV 0101010 <SS 16
L PSR UPTUPRPPRUR 16
TP U PSPPSR 16
} BCCESSES ...ttt eiteee et ee e ite e e e ae e e e e n e e e e e nre e e e b reeeabreeeanneeearreaeane 17
1d StOpPINGg @ Programcccoceeieieneeenie e 17
Ath the RPL STACKoviiiiiieie e 17
EFUCKION SEE ... e 18
... 27

Contents Meta Kernel

1 Machine Language Compiler

1.1 Beforeyou start

This section will talk about the MASD syntax as used with tf
from the HPTools v3.0.

There are some differences between the MASD syntax us
the one used with the HPTools.

The main limitations are the expressions that are compiled ¢
the MK v2.0) and operations can't be performed on two exte

1.2 Generalitieson ML (Machine Language)

As the Saturn processor directly executes ML, the operatil
what a ML program is doing.

On the HP 48 calculator, user data are stored in the sami
When there is a bug in a ML program, you have best chanct
very careful when programming in ML.

ML is a processor dependent language, so what you will leg
not be useful on other processor. On the other hand, the prc
will acquire are not dependent of the hardware and then will

1.3 Generalitieson Masd Syntax

Masd expects a character string (called source) on the top ¢

A source is a set of instructions, comments, and separatior
a carriage return and an arobas @.

Masd is case sensitive, so be careful, as « boucle » i
different labels.

Separation characters are those with an ASCIl number
spaces, tabs, line feed and carriage return.

Some instructions need a parameter, called field. Separati
instruction and the field, are spaces, tabs, and points. Ther
instead of A+B A.

Comments can be placed everywhere between two instru
or ; and finish at the end of the current line.

1.4 Using labels

A label is a marker in the program. The principal use of le
destinations.

A label is a set of less than 128 characters different from s
label begins with a star ‘“*’ and ends with a separation chara

*BigLoop is the BigLoop label declaration.
Be careful about upper and lower cases!

Meta Kernel

Appendixes

f labels can be used:

| is a label that can be used everywhere in the project, like global
ascal or C.

. a label that is only accessible in a local section like local variables in
1 starts at the beginning of a source, after a global label, after a link (see

1 finishes at the end of a source, before a link, before a global label.
i identified by a ‘.’ as the first character.

a label that exists only in the link where it is declared, like a private
'ct Pascal.

/dentified by a ‘_’ as the first character.

ects, using less global labels is better because a global label is longer to
ecause it gives a better program structure. A good habit is to use global
the program in subroutines, and to use local labels inside these

nts
o define constants. It is useful to identify a memory address by a name,
ddress itself.

instead of typing D1=80100 every time it is needed, it is better to
Result 80100 at the beginning of the project and then to type
u It when needed.

aration:

me Expressionor

ame Expressionor

tName Expression

e CstValue orEQU CstName CstValue

hexadecimal number. A decimal number can be typed with a leading #

is same as DC Foo #16
stant cannot be given the same name as a declared label.
ame of a constant follows the same rules as the name of a label.

‘es a ‘programming register’ called CP (Constant Pointer) which helps to
1ts. CP is defined by:

PE=Expression
on 5 nibbles, its initial value is 80100.

Appendixes Meta Kernel

DCCP Increment ConstantName

declares a constant with the current CP value and then incre
Note: Increment is a hexadecimal value, to use a decimal va
For example, if CP equals to $10

DCCP 5 Foo

defines a Foo constant with a value of $10 and then change

Several constants can be defined, starting from CP.
: Inc CstNameO CstNamel .. CstNameN-1 :

defines N constants CstNamex with a value of CP+x*Inc .
value to CP+N*Inc.

Warning: By default, Inc is an hexadecimal number. Mete
decimal.

1.6 Expressions

An expression is a mathematical operation that is calculated
Terms of this operation are hexadecimal or decimal values,
An expression stops on a separation character.

DCCP 5 @Data

D1=(5)@Dbata+$10/#2 DO=(5)$5+DUP

are correct expressions.

Notes:

A hexadecimal value must begin with a $ and a decimal valt

There are no priorities (precedences) in operations. $1+$2*
parenthesis to set precedences.

You can't use more than three level of parenthesis.
Calculations are done on 32 bits.

1.7 Skips

Skips are a first step from ML to a third generation langu
another way to write SATURN instructions.

The basement of Skips is the Block structure.
A block is enclosed in { and }, and can be inside another b
The following instructions deal with blocks.

SKIPS instructions Equivalents
SKIP { .. } GOTO .S .. *.S
SKIPL { ... } GOTOL .S ... S

SKIPC { .. }

*
GOC .S ... *.S
*.S

SKC { .. } GOC .S ..

SKIPNC { ... } GONC .S .. *.S
SKNC { ... } GONC .S .. *.S
Meta Kernel Appendixes

Test GOYES .S ..

*
*

.S
Test GOYES .S .. *.S
/Test GOYES .S .. *.S

GOSUB .S ... *.S

GOSUBL .S ... *.S

Defines a block (generates no code)

$/02A2C GOIN5 *_S ... *_S (to create a character string)

$/02DCC GOIN5 *_S ... *_S (to create a code object)

$/PROLOG GOIN5 .S .. *_S (to create a ‘prolog — length’
object)

pposite of Test. For example if Test is ?7A<C_A, /Test is ?2A>=C_A.
structions dealing with the hardware register (?HST=0, ?MP=0,
=0 and ?SB=0) cannot be inversed.

wre defined, special instructions can be used in them. These instructions
1d UP allow to jump to the end or to the beginning of a block.

ctions are equivalent to
*_Beginning
GOTO.End
GOC.End
GONC.End
EXIT ?A=0.A ~"_End
GOTO.Beginning
GOC.Beginning
GONC.Beginning
up ?A=0_A " _Beginning
*_End

nake confusion between EXIT and UP instructions, which are GOTOs,
UP after a test, which are GOYES's.

can jump to the beginning or to the end of an upper-level block by
number of blocks to exit, after the UP or EXIT instructions.

ctions Are equivalent to
*_Beg3
*_Beg2
*_Begl
2 GOTO.Beg2
3 GOTO.Beg3
1Tl GOTO.End1l
1T3 GOTO.End3
*_End1l
*_End2
*_End3

5 equivalent to EXIT, and UP1 is equivalent to UP.

LSE, SKEC or SKENC instructions, two blocks create an IFNOT-
structure.

Are equivalent to Or in high-level language
?A=0_.A GOYES.Beg2 IF NOT A=0 THEN
*.Begl BEGIN

Appendixes Meta Kernel

EXIT GOTO.End2 % and not End1
uP GOTO.Begl
X *_End1l EN
SKELSE GOTO.End2 ELSE
*_Beg2 BE
A+1.A A+1.A
EXIT GOTO.End2
uP GOTO.Beg2
> *_End2 EN

1.8 SATURN instructions syntax

181

18.2

In this section:

X is an integer number between 1 and 16.

h is a hexadecimal digit.

aisalto 16 or a 0 to 15 number depending of the current t
fis afield A, B, X, XS, P, WP, M or S.

Reg is a working register A, B, C or D.

SReg is a save register RO, R1, R2, R3 or R4.

Exp is an expression.

Cst is a constant. The value is given in hexadecimal or deci
respectively.

DReg is a pointer register DO or D1.
Data is memory data pointed by DO or D1. It means DATO ¢

Note: For instructions that use two working registers, onl
and A-C are available.

For instructions like Regl=Regl... you can write only Regl
the same as A+C _A.

Assigning 0 to aregister
Syntax: Reg=0.f
Example: A=0_M

Loading avaluein Aor C
LC and LA instructions allow to load a constant value into A
LC hhh...hh loads x nibbles into C.
LA hhh...hh loads x nibbles into A.
Example: LC 80100

Note: LC #12 allow to load 12 decimal into the 3 first nib
nibbles used is the number of characters necessary to wri
#). So #12 will take three nibbles.

LCASC(x) Characters loads the hexadecimal value
must be between 1 and 8. LAASC(X) if the counterpart for

Example: LCASC(7) HP_MASD

Meta Kernel Appendixes

or LA(X) Exp load the result of an expression into C or A, using x

‘'5)@Buffer+DataOffset

gister value into another register
=Reg2.f
3. X

tween two registers

Reg2EX.f

X.W

=Regl+Reg2.f or Regl+Reg2.f
+ALA or C+A_A

ind Reg2 are same, this cause to multiply the register by two.

=Regl-Reg2.f or Regl-Reg2.f
-B_A or C-B.A
ywing instructions are also available:
B=C-B.f C=A-C.f D=C-D.Ff

1d decrement
Reg+Cst.f or Reg+Cst.f Reg=Reg-Cst.f or Reg-Cst.f
+10.A or A+10.A A=A-10.AorA-10.A

Saturn processor is not able to add a constant greater than 16 to a
cst is greater than 16, Masd will generate as many instructions as

if adding constants to a register is very useful, big constants should be
Ise this will slow down execution, and generate a big program.

ig a constant greater than 1 to a P, WP, XS or S field is a bugged
ruction (problem with carry propagation). Use these instructions with

adding a constant greater than 16 to a register, the carry should not be

5 shifting (divide by 16)
R.f
LW

shifting (multiply by 16)
L.f
W

Appendixes Meta Kernel

1.8.10

1.8.11

1.8.12

1.8.13

1.8.14

1.8.15

1.8.16

1.8.17

1.8.18

1.8.19

Right bit shifting (divide by 2)
Syntax: RegSRB.f
Example: ASRB . W

Right circular nibble shifting
Syntax: RegSRC.f
Example: ASRC . W

Left circular nibble shifting
Syntax: RegSLC.f
Example: ASLC_W

Logical AND
Syntax: Regl=Regl&Reg2.f or Regl&Reg2.f
Example: C=C&B.A or C&B_A
Logical OR
Syntax: Reg1=Regl !Reg2.f or Regl |Reg2.f
Example: C=CIB_.A or CIB.A
Logical NOT

Syntax: Regl=-Regl-1.f
Example: C=-C-1_A

Mathematical NOT
Syntax: Regl=-Regl.f
Example: C=-C_A

Loading value into a R Register
Syntax: RReg=Reg.f
Example: RO=A_W
Note: Reg can only be A or C.

Loading value into A or C from a R register
Syntax: Reg=RReg.f
Example: A=R1_X
Note: Reg can only be A or C.

Exchange between A or C and a R register
Syntax: RegRRegEX.f
Example: AR1EX . X
Note: Reg can only be A or C.

Meta Kernel Appendixes

e (POKE)
stions write the value of A or C at the address pointed to by DO or D1.

Reg.f or Data=Reg.x

1=C.A or DATO=A.10

10only be A or C.

| (PEEK)

stions load into A or C the data pointed to by DO or D1.

Jata.f or Reg=Data.x

ATL.A or A=DATO.10

10only be A or C.

odifications

ind D1

=hh or DReg=hhhh or DReg=hhhhh or
=(2)Exp or DReg=(4)Exp or DReg=(5)Exp
:FF D0=12345 D1=(5)toto+$5

etween A or C and DO or D1

r C, field A, into DO or D1
=Reg

A

10only be Aor C.

four low nibbles of A or C into DO or D1
=RegS

:AS

10only be A or C.

Aor C, field A, and DO or D1.
RegEX

EX

10only be A or C.

the 4 first nibbles of A or C and DO or D1
RegXS

XS

10only be A or C.

d decrement of DO and D1
=DReg+Cst or DReg+Cst
=DReg-Cst or DReg-Cst
:DO+12 D1-50

Appendixes Meta Kernel

Note 1: The Saturn processor is not able to add a cons
register but if cst is greater than 16, Masd will generate
needed.

Note 2: Even if adding constants to a register is very useft
avoided because this will slow down execution, and generatt

Note 3: After adding a constant greater than 16, the carry sk

1.8.23 Working registers tests
Notes:

A test is always followed by RTNYES, GOYES, SKIP
GOTOL, GOVLNG, GOSUB, GOSUBL or GOSBVL.

RTY is the same as RTNYES.

An arrow (") may be followed by a label name, then repl
followed by a skip block, which is equivalent to the inver:
SKIPYES, to reproduce a IF-THEN structure. Example: ?A
as ?A#C_.A { }.

SKI1PYES may be omitted if followed by a skip block ({}).

If the test if followed by a GOTO, GOTOL, GOVLNG, GOSL
Masd compiles the inverse of the test, to reproduce a GC
Example: 7A=C_A GOTO B s the same as ?A#C_.A {

GOTO, GOTOL, GOVLNG, GOSUB, GOSUBL, GOSBVL or
a HST test.

A label name must follow a GOYES, GOTO, GOTOL, GOV1
GOSBVL.
a) Equality and inequality tests
Syntax: ?Regl=Reg2.f ?Regl#Reg2.f
Example: ?A=C_B ?C#D_.A
Note: The HP inequality character may be used.

b) Lower and greater tests
Syntax: ?Regl<Reg2.f ?Regl<=Reg2.f
Example: ?A<C_.B ?C>=D_A
Note: The HP lower or equal and greater or equal characters

c) Nullity tests
Syntax: ?Reg=0.f ?Reg#0.f
Example: ?A=0.B ?C#0.XS
Note: The HP inequality character may be used.

1.8.24 Working with some bits of A or C register

RegBIT=v.a ?RegBIT=v.a where Regis AorC, vis |
is the bit number.

Examples: ABIT=0.5, ?CBIT=1.3 GOYES TOTO

1.8.25 Operations on PC

Meta Kernel Appendixes

1 the Hardware Status Register
SR=0 MP=0 HST=a
=0 ?SR=0 ?MP=0 ?HST=a

P
P=P-1 P-1

.a CPEX.a
+P+1

stions
1
el or GOLONG label

t Cst is an hexadecimal number.

abel label is a constant, or a label in absolute mode
COMMAND'* Command is an entry in the STARTEXT table.
el

bel

t Cst is a hexadecimal number.

abel label is a constant, or a label in absolute mode.

COMMAND'* COMMAND is an entry in the STARTEXT table.

1
el same as SKIPNC { GOTO label }
belsame as SKIPC { GOTO label 3}

M RTNCC RTNSC RTI
C
TY after a test.

etween C and RSTK
RSTK=C instructions allow to push to or pop data from the Saturn

t instructions
T=C, A=IN and C=IN

and C=1IN instructions are bugged (they only work on even addresses).
2 and C=1IN2, which are ROM calls to A=IN and C=IN instructions.

beginning of ROM is not usable (because it is recovered by RAM), use
>=IN3, which are calls to A=IN and C=IN instructions in the Meta

C=IN is a ROM call that does OUT=C C=IN.

Appendixes Meta Kernel

Note 4: OUT=C=1IN3 is the same, but in the Meta Kernel
ROM is recovered).

1.8.31 Processor control instructions

Working mode modification
SETDEC SETHEX

other instructions

UNCNGF CONFIG RESET C=I1D
SHUTDN INTON INTOFF RSI
SREQ?

BUSCB BUSCC BUSCD

Meta Kernel Appendixes

Appendixes

Appendixes

1 Introduction to assembly lang

1.1 Introduction

Our purpose here is to help you translate an algorithm in £
using Masd. You are supposed to already know the progre
language.

If you want to learn how to program, there are several book
Art of Programming'.

We will try to give you the basis to build little programs.
experience, look at other people's programs, and read mor
subject.

Many informations here are taken from the excellent Frenc
de la HP48' by Paul Courbis (Angkor).

1.2 What isassembly language (asm) ?

Asm is the only language directly readable by the micropro
fastest and the most powerful language. Each processor
composed of binary numbers interpreted by the processo
giving instructions to be processed.

To make it easily readable by humans, each group of nur
mnemonic. Assemblers (like Masd) translate these mnem
the processor can execute. They sometimes add ma
structures to ease the programmer's work.

1.3 The Saturn processor

1.3.1 Generalities

SATURN is the name of a processor made by NEC. It is u
bit processor (it can process 4 bits at each clock tick), with
5 64-bit saving registers, 2 20-bit memory pointers, an inter
software flags, 4 hardware flags, 1 field register, 1 output re
1 20-bit program counter.

A bit is a binary digit, it can takes only two values 0 or 1.
A nibble is a 4-bit value, from 0 to 15.

1.3.2 Working and saving registers
These registers are 64-bit (16-nibble) registers divided into 1

A field is a part of a register; a group of nibbles. Two fielt
have different lengths.

In a Saturn register, there are six fixed fields and two varia

register):
lis]J1uaJasa]12]11]Jwo]lols]7]e6]5]4
(With P=9) P

Meta Kernel Appendixes

king with the A field only affects the 20 lowest bits of the register.
) means register C, field B.

gister which indicates the WP field length, the P field location, and the
vibble for the instructions LA and LC.

He

ster is a 16-bit register, composed of 16 flags, which can be only 0 or 1.
milar to RPL flags (CF, SF...).

ack is a set of eight 20-bit registers. Only one of them is accessible
1e RPL stack).

utine is called (with GOSUB), the return address (just after the GOSUB)
0 this stack. And when a RTN is encountered, the Saturn pops this
from the stack and jumps to it.

2 are only eight levels, building large programs with a lot of subroutine
it overload the return stack.

ble to push a value with RSTK=C and to pop a value with C=RSTK.

iters
>mory pointers DO, D1 and PC are 20-bit registers, which contains

e used to access memory. You can load any address in them and then

‘'ogram Counter, it holds the address of the next instruction to be
s modified at every jump (GOTO, GOSUB...), or directly with instructions

Py

ling pointers, let's see how memory is seen through HP asm.

an be compared to a ring of cells. Each cell contains one nibble. They
from 0 to 524287 (20 bits). It is a ring, so the cell 524287 is followed by
‘number of a cell is called its address.

| register that contains an address. On HP48, a pointer is 20 bits (5
Therefore we can access any memory cell with one pointer (Whereas
2d two pointers).

Appendixes Meta Kernel

c)

Memory accesses

On the HP48, memory inputs and outputs are made throu
DO and D1 indicating which cell will be accessed.

It is possible to access more than one cell at one time, as |
nibbles) can be loaded.

A=DATO A reads 5 nibbles at the address pointed by DO, t
A field of A (Aa).

DAT1=C 12 writes 12 nibbles at the address pointed by D
12 lowest nibbles of C (nibbles 0 to 11).

Note that the Saturn processor inverses the order of the
Ca contains 84571 and D1 contains 80200, DAT1=C A wil

80200

80201 80202 8020:

7 5 4

The inversion is done at each read or write, so if you write
address, using the same field, you will retrieve the same dat

1.4 Starting and stopping a Program

Starting to write an asm program looks difficult to begin
comprehension of the RPL system, in order to avoid destroy

To start a program, all the system data must be saved sorr
they will be read back, after your program has finished, ir
operation. These data are contained in the registers Ba, Da,

This saving is done with the Masd instruction SAVE (or the
=SAVPTR). Do it only one time, before doing any other proc

At the end of your program, you have to restore the syster
LOAD (or GOSBVL =GETPTR).

You can then exit to the RPL system with RPL (or
PC=(A)).

These two instructions can be compacted into the single
GOVLNG =GETPTRLOOP).

The shortest program is:

""'SAVE

% This program does nothing !
LOADRPL

0"

1.5 Waorking with the RPL stack

The RPL stack (the stack displayed on the screen) is store
addresses, each address points to an object in RAM or F
object, its address must be first read.

The stack pointer is in D1, pointing to the address of the fir
to the second level, and so on. A 00000 marks the end of
SAVE saves D1 (and other RPL registers) in reserved RANM
then need to read the RPL stack, do a LOAD before, whi

Meta Kernel

Appendixes

1 LOAD before exiting from your program, otherwise D1 could point
memory, that may crash your HP.

rogram needs to read the stack, it is recommended to do the argument
efore starting the asm code.

ead the value of a system binary on the first stack level, do the following:

% Reads the address of the first level in Ca
. now points on the prolog of this object

2 that D1 is saved in Ca

D1 points on the value of the SB

% Reads the value in Aa

istores D1

>, you just have to make the stack start 5 nibbles upper:

The stack starts upper, so lower levels are dropped
Da contains the number of free 5 nibbles-blocks,

o you shall increment it

ed by SAVE and restored by LOAD.

)AD after, the old value of D1 is retrieved. In order to effectively drop an
_OAD D1+5 D+1.A at the end of your program (before the RPL
do LOAD D1+5 D+1.A SAVE anywhere in your program.

ment on the stack, you just have to create a new stack level. E.qg. if the
sisin Aa:

s the RPL registers

KIPNC % Tests free memory

C 1 ERREUR C %} % Insufficient mem

Adds a stack level

% Puts the object address

es the RPL registers

uction set

- columns in this table.

mn may be empty, or contains a M or a star. M indicates that the
yde is used (SETDEC and SETHEX). A star indicates that the carry is
e instruction.

slumn contains the instruction mnemonic.

mn indicates the fields which can be used with the instruction. f is any
any field but A, d is a nibble value (0-15 or 1-16), x is a nibble value (0-

n is the execution length in Saturn cycles. n is the number of nibbles in
. If the time is not integer, take IP(time) if the instruction is on an even
(time)+1 if the instruction is on an odd address. For tests instructions,
times separated by a slash, the first is for a true test, the second for a
“memory instructions, the two times indicate the instruction length and
Jderation length.

en from the book 'Voyage au centre de la HP48 GX' by Paul Courbis,
1S.

Appendixes Meta Kernel

* 2A#0 A 21.5/13.5
* 2A#0 a 16.5/8.5+q
* 2A#C A 21.5/13.5
* 2A#C a 16.5/8.5+q
* ?A<=B A 21.5/13.5
* ?A<=B b 16.5/8.5+q
* ?A<B A 21.5/13.5
* ?A<B b 16.5/8.5+q
* ?2A=0 A 21.5/13.5
* ?2A=0 a 16.5/8.5+q
* ?A=C A 21.5/13.5
* ?A=C a 16.5/8.5+q
* ?A>=B A 21.5/13.5
* ?A>=B b 16.5/8.5+q
* ?A>B A 21.5/13.5
* ?A>B b 16.5/8.5+q
* ?ABIT=0 d 20.5/12.5
* ?ABIT=1 d 20.5/12.5
* ?B#0 A 21.5/13.5
* ?B#0 a 16.5/8.5+q
* ?2B#A A 21.5/13.5
* ?2BH#A a 16.5/8.5+q
* ?B<=C A 21.5/13.5
* ?B<=C b 16.5/8.5+q
* ?B<C A 21.5/13.5
* ?B<C b 16.5/8.5+q
* ?B=0 A 21.5/13.5
* ?B=0 a 16.5/8.5+q
* ?B=A A 21.5/13.5
* ?B=A a 16.5/8.5+q
* ?B>=C A 21.5/13.5
* ?B>=C b 16.5/8.5+q
* ?B>C A 21.5/13.5
* ?B>C b 16.5/8.5+q
* 2C#0 A 21.5/13.5
* 2C#0 a 16.5/8.5+q
* 2C#B A 21.5/13.5
* 2C#B a 16.5/8.5+q
* 2C#D A 21.5/13.5
* 2C#D a 16.5/8.5+q
* 2C<=A A 21.5/13.5
* 2C<=A b 16.5/8.5+q
* ?2C<A A 21.5/13.5
* ?2C<A b 16.5/8.5+q
* 2C=0 A 21.5/13.5
* 2C=0 a 16.5/8.5+q
* ?C=B A 21.5/13.5
* ?C=B a 16.5/8.5+q
* ?2C=D A 21.5/13.5
* ?2C=D a 16.5/8.5+q
* 2C>=A A 21.5/13.5
* 2C>=A b 16.5/8.5+q
* 2C>A A 21.5/13.5
* 2C>A b 16.5/8.5+q
* ?CBIT=0 d 20.5/12.5
* ?CBIT=1 d 20.5/12.5
* 2D#0 A 21.5/13.5
* 2D#0 a 16.5/8.5+q
* ?D<=C A 21.5/13.5
* ?D<=C b 16.5/8.5+q
* ?D<C A 21.5/13.5
* ?D<C b 16.5/8.5+q
* ?2D=0 A 21.5/13.5
* ?D=0 a 16.5/8.5+q
Meta Kernel Appendixes

21.5/13.5

16.5/8.5+9
21.5/13.5

16.5/8.5+9
|5.5/7.5
|5.5/7.5
|5.5/7.5
|5.5/7.5
|5.5/7.5
|5.5/7.5
16.5/8.5
16.5/8.5
|5.5/7.5
L5+q

3

L5+q

3

L5+q

L5+q

3

L5+q

3

L5+q

3

2.5,3.5
20+p,1+9/2
9.5
19+q,1+9/2
23.5,3.5
20+q,1+9/2
9.5

19+q,1+9/2
3.5

Appendixes

Meta Kernel

ABEX a 4.5+q
ABEX A 8
ABIT=0 d 7.5
ABIT=1 d 7.5
ACEX a 4.5+q
ACEX A 8
ADOEX 9.5
ADOXS 8.5
AD1EX 9.5
AD1XS 8.5
APCEX 19
AROEX f 9+q
AROEX W 20.5
ARLEX f 9+q
AR1EX W 20.5
AR2EX f 9+q
AR2EX W 20.5
AR3EX f 9+q
AR3EX W 20.5
AR4EX f 9+q
AR4EX W 20.5
* ASL a 4.5+q
* ASL A 8
ASLC 22.5
ASR a 4.5+q
ASR A 8
ASRB f 8.5+q
ASRB W 21.5
ASRC 22.5
*M B=-B a 4.5+q
*M B=-B A 8
*M__ B=-B-1 a 4.5+q
*M B=-B-1 A 8
B=0 a 4.5+q
B=0 A 8
B=A a 4.5+q
B=A A 8
B=BIA f 6+q
B=BIC f 6+q
B=B&A f 6+q
B=B&C f 6+q
*M B=B+1 a 4.5+q
*M B=B+1 A 8
*M B=B+A a 4.5+q
*M B=B+A A 8
*M B=B+B a 4.5+q
*M B=B+B A 8
*M B=B+C a 4.5+q
*M B=B+C A 8
* B=B+x+1 f 8+q
*M__ B=B-1 a 4.5+q
*M B=B-1 A 8
*M__ B=B-A a 4.5+q
*M B=B-A A 8
*M__ B=B-C a 4.5+q
*M B=B-C A 8
* B=B-x-1 f 8+q
B=C a 4.5+q
B=C A 8
*M__ B=C-B a 4.5+q
*M B=C-B A 8
BCEX a 4.5+q
BCEX A 8
* BSL a 4.5+q
* BSL A 8

Meta Kernel

Index

22.5
L5+q

3.5+q
21.5
22.5

L5+q

3

23.5,3.5
20+q,1+9/2
9.5

19+q,1+9/2
23.5,3.5

20+q,1+9/2
9.5
19+q,1+9/2
3.5

3.5

Appendixes

Meta Kernel

C=R1 W 20.5
C=R2 f 9+q
C=R2 W 20.5
C=R3 f 9+q
C=R3 W 20.5
C=R4 f 9+q
C=R4 W 20.5
C=RSTK 9
C=ST 7
CBIT=0 d 7.5
CBIT=1 d 7.5
CDOEX 9.5
CDOXS 8.5
CD1EX 9.5
CD1XS 8.5
CDEX a 4.5+q
CDEX A 8
CETDEC 4
CETHEX 4
CLRHST 4.5
CLRST 7
CONFIG 13.5
CPCEX 19
CPEX X 8
CROEX f 9+q
CROEX W 20.5
CRI1EX f 9+q
CR1EX W 20.5
CR2EX f 9+q
CR2EX W 20.5
CR3EX f 9+q
CR3EX W 20.5
CR4EX f 9+q
CR4EX W 20.5

* CSL a 4.5+q

* CSL A 8
CSLC 22.5
CSR a 4.5+q
CSR A 8
CSRB f 8.5+q
CSRB W 21.5
CSRC 22.5
CSTEX 7
D=0 a 4.5+q
D=0 A 8
D=C a 4.5+q
D=C A 8

*M__ D=C-A a 4.5+q

*M D=C-A A 8

*M D=-D a 4.5+q

*M D=-D A 8

*M__ D=-D-1 a 4.5+q

*M D=-D-1 A 8
D=DIC f 6+q
D=D&C f 6+q

*M D=D+1 a 4.5+q

*M D=D+1 A 8

*M D=D+C a 4.5+q

*M D=D+C A 8

*M D=D+D a 4.5+q

*M D=D+D A 8

* D=D+x+1 f 8+q

*M__ D=D-1 a 4.5+q

*M D=D-1 A 8

*M D=D-C a 4.5+q

Meta Kernel

Index

3.5+q
21.5
22.5
12.5/4.5
L7
12.5/4.5
9.5

15+3q)/2

3+3q/2
LS

75
3.5

Appendixes

Meta Kernel

PC=(C) 26,35

PC=A 19
PC=C 19
RO=A [9+q
RO=A W 205
RO=C [9+q
RO=C W 205
R1=A [9+q
R1=A W 205
R1=C [9+q
R1=C W 205
R2=A [9+q
R2=A W 205
R2=C [9+q
R2=C W 205
R3=A [9+q
R3=A W 205
R3=C [9+q
R3=C W 205
R4=A [9+q
R4=A W 205
R4=C [9+q
R4=C W 205
RESET 75
RSl 8.5
RSTK=C 9
RTI 11
RTN 11
RTNC 12.5/45

* RTNCC 11
RTNNC 12.5/45

* RTNSC 11
RTNSXM 11
SB=0 45
SHUTDN 6.5
SR=0 45
SREQ? 95
ST=0 d 55
ST=1 d 55
ST=C 7
UNCNFG 14.5
XM=0 45

Meta Kernel Index

| ndex

—A—
Assembler, 3, 16 Masd, 3
Assembler syntax, 3 Masd syntax, 3
CODE, 7 Registers, 16
Congtants, 5
—E—
Saturn, 16
EXITs, 7 Saturn instruction ¢
Expressions, 6 SKIPs, 6
STRING, 7
STROBJ, 7
—L—
Labels, 4
Links, 4
UPs, 7

Meta Kernel Appendixes

